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Abstract. The aim of this paper is to show the effect of secondary flows caused by natural convection
on the laminar-turbulent hydrodynamic transition. It is not a question of measuring a critical threshold
value of Reynolds number of transition but only to estimate the degree of turbulence in the transition
regime, i.e. weak turbulence in the case of superposition (mixed convection) or not (forced convection) of
secondary flows on the forced flow. This is possible thanks to the application of the wavelet transform.
The calculation of the Hölder exponent, associated with the maximum value of the singularity spectrum
for two configurations, vertical (forced convection) and horizontal (mixed convection) allows the degree of
turbulence to be measured in both cases. The variation of the Hölder exponent versus the Reynolds number
has enabled it to be shown that the secondary flows stabilise the main flow and stifle the beginnings of
the turbulence during the regime of transition to turbulence; these kinds of results have also been shown
in literature. Generally, large-sized secondary flows (for example Dean’s flows) stabilise the turbulence.
Our work confirms this, through an experiment carried out in identical conditions for mixed convection
(horizontal flow) and forced convection (vertical flow).

PACS. 47.27.Cn Transition to turbulence – 02.50.-r Probability theory, stochastic processes, and statistics
– 05.40.-a Fluctuation phenomena, random processes, noise, and Brownian motion

1 Introduction

The hydrodynamic laminar-turbulent transition, for
forced internal flows, has been the subject of many stud-
ies which show the regime to be sensitive to experimental
conditions (geometry, roughness of the wall, inlet condi-
tions). These studies, for which we give some essential bib-
liographical references without seeking to be exhaustive
[1–5], have mainly aimed at determining the critical
Reynolds number for different experimental conditions
and the wall-fluid heat transfer, and studying the hydro-
dynamic instabilities. In the particular case where the wall
is heated, each gravity component perpendicular to the
main flow induces a secondary circulation with a maxi-
mum effect for the horizontal position of the duct. This
type of flow is encountered in various industrial appli-
cations sometimes presenting process problems as a re-
sult of strong temperature gradients in a straight section.
However, in this case, the global wall-fluid heat transfer
is greatly improved in relation to pure forced convection
[7,8], particularly in a laminar regime. These secondary
flows also influence the laminar-turbulent transition; thus
two ways of transition to the turbulence have been ev-
idenced [8]: hydrodynamic, controlled by the Reynolds
number and thermal, controlled by the Rayleigh number;
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both ways may be coupled, if these control parameters
take on sufficiently high values. To characterise the hydro-
dynamic transition more specifically Petukhov et al. [9]
evaluate the variation of the intermittence rate for the
temporal signal which corresponds to the wall temper-
ature, versus the Reynolds number; they compare their
results to those of Rotta [2] obtained by the same process
but from local time variations of the fluid velocity, as the
flow is isothermic (without a heat supply); they also show
that natural convection delays the turbulence during this
hydrodynamic transition.

Our study concerns this hydrodynamic transition for
the mixed convection phenomenon. We will compare the
arrival of turbulence in the case of pure forced convec-
tion (no gravity effect, pure Poiseuille flow) and the case
of mixed convection (superposition of secondary flows on
the main flow) by estimating the degree of turbulence in
both situations. Thus, we work with a flow in a cylindrical
duct, heated at the wall and able to pass from the vertical
position (which corresponds to forced convection) to the
horizontal position (mixed convection) with all the other
experimental parameters maintained.

For such an analysis, the information used is the tem-
perature measured on the external wall. The correspond-
ing temporal signal processing technique is the wavelet
transform. By bringing times and frequencies into op-
eration simultaneously, this transformation may prove



708 The European Physical Journal B

Test section
C

oo
le

r

Flow meter

Circulating
pump

d.c. generator

Inlet boundary
temperature
maintained

constant

Hydrodynamic
approach

Sump tankWater

Fig. 1. Diagram of experimental loop.

particularly suited and efficient as the recent studies of
the turbulent regime elsewhere have shown [10,11]. Our
conclusions will essentially be based on the comparison of
the Hölder exponent associated with the maximum value
of the singularity spectrum. In the transition zone at the
same Reynolds number for both configurations, the value
of the Hölder exponent enables the degree of turbulence
in both configurations to be estimated and thus the effect
of the presence of secondary flows on turbulence develop-
ment in this transition regime to be quantified.

2 Experimental set-up

Our experiments concern the study of the flow of a
monophasic fluid (water) in a horizontal or vertical cylin-
drical tube heated uniformly at the wall. The experimen-
tal set-up is presented in Figure 1. The tube is in inconel
0.2 mm thick. The outside diameter is 1 cm and the to-
tal length 2 m. The 1 m central zone, which is not in-
sulated from the environment, corresponds to the testing
zone (the aspect ratio is thus equal to 100). The first part
of the tube (before the testing zone) enables the fluid to be
established hydraulically so that the flow is Poiseuille type
at the inlet of this zone. Moreover, it is free at the outlet.
The fluid circulation is ensured by a multistage centrifugal
pump (rotation 2800 r.p.m). The average fluid velocity v
is regulated by a flowmeter. The fluid passes through a
heat exchanger before entering the section, in order to en-
sure a constant inlet temperature. The testing zone wall
(whose electrical resistance is 0.16 ohm) is heated elec-
trically by applying a direct electric current between the
input and output terminals; the strength may vary from
10 to 75 A s. The input terminal is maintained at a con-
stant temperature by an external fluid circulation. The
heat flux P is uniform on the straight section throughout
the testing zone and is of an order of 20 kW/m2 (for a
65 A current); taking into account the temperature values
reached, the external heat losses of the tube are around

500 W/m2 (that is 2% of P ). The inlet of this zone is
taken as the origin of the axial coordinate z.

In order not to perturb the flow, no measurement is
carried out in the fluid. For a given fluid velocity and
heat flux, the temperature field is measured on the ex-
ternal wall. In the experiments presented, this measure is
carried out by means of a type K thermocouple 0.2 mm
in diameter applied to the wall at axial coordinate z =
80 cm. The signal sampling time step is 0.02 s and the
measurement accuracy is around 0.1 ◦C.

3 Experimental results

The flow in a horizontal tube heated at the wall reveals
a temperature difference between the top and the bottom
of a straight section in a stable laminar regime. For ex-
ample [12], for a heat flux of 20 kW/m2 and a Reynolds
number of 750 this difference can reach 40 ◦C at an axial
coordinate z = 80 cm. The Reynolds number is calcu-
lated by considering the average fluid velocity v and by
estimating the physical properties at the average temper-
ature of the fluid between the inlet and the outlet of the
heated zone. The bulk temperature of the fluid, evaluated
by an inlet-outlet heat balance, increases from 15 ◦C at
the inlet to 25 ◦C at the outlet of the heated zone, for a
Reynolds number of 2000 and a heat flux of 20 kW/m2.
The temperature difference in a straight section is due to
the secondary flows created by the effect of gravity which
are superposed on the main axial flow; these flows are com-
posed of two contrarotating rolls which are symmetrical
in relation to the vertical plane passing through the tube
axis [13]. The corresponding velocities increase with axial
coordinate z, increasing the heat transfer from the bottom
to the top of the straight section, which contributes to the
increase in the temperature difference.

When the flow velocity (Reynolds number) and/or the
heating flux (Rayleigh number) [14–16] is increased, an
instability phenomenon appears. Large amplitude fluctu-
ations manifest themselves randomly on the wall temper-
ature. Moreover, an examination of the fluctuations shows
that they are always characterised by two time constants.
The first, relating to the temperature drop, is of an or-
der of one second, while the other, which corresponds to
the return to the stationary state, is around ten seconds.
These instabilities are localised on an instability diagram
in a Re-Ra plane (see Fig. 2). We call these instabilities
“thermoconvective instabilities”. They are characteristic
of the mixed convection phenomenon. For greater values
of the two parameters (Re and Ra), we distinguish two
types of “laminar-turbulent” transition, of hydrodynamic
or thermal nature. Two possible ways therefore exist to
go towards the turbulence. In this presentation we will
only study the hydrodynamic “laminar-turbulent” transi-
tion [17]. Thus, we will be concerned with the arrival of the
weak turbulence and the role of the transverse secondary
flows in this regime.
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4 Technique of analysis

4.1 Wavelet transform

The analysis of most signals generally involves the use of
the Fourier transform. Although this technique is efficient
for analysing stationary phenomena, it is inefficient in the
case of non-stationary signals. The wavelet transform was
introduced in order to remedy this [18,19]. This wavelet
transform enables the signal to be decomposed both into
time and into scales; the signal is thus no longer repre-
sented with frequency components but with a linear com-
bination of elementary functions. These functions are con-
structed by expanding and translating a single function g.
The wavelet transform of a signal s(x) is thus written:

Tg[s](a, b) =
1
a

∫ +∞

−∞
s(x)ḡ

[
x− b
a

]
dx with a > 0

(1)

where a is a scale parameter and b a translation parameter
of the wavelet.

The mother wavelet g must satisfy an admissibility
condition. Let us note that this implies that ĝ(0) = 0 and
therefore, if g ∈ L′(R),∫ +∞

−∞
g(x)dx = 0. (2)

A mother function g which satisfies equation (2) will be
called an analysing wavelet.

The choice of analysing wavelet has often been the
derivatives of order N of the Gaussian function, that is:

g(N)
(
x
)

=
dN

dxN
e−

x2
2 . (3)

From the maximum of the wavelet transform module
a partition function may be constructed which, on one
hand, only covers the singular parts of the signal and, on

the other, measures the local Hölder exponent. Arnéodo
et al. [20–24] suggest using the following formulation:

Z(q, a) =
∑
l∈L(a)

(
supà≤a|Tg[s](bl(à), à)|q

)
Z(q, a) ≈ aτ(q) (4)

where L(a) is the set of all the maxima lines of Tg[s] which
exist on the scale a, and bl(a) is the position of the maxi-
mum of the line l module on this scale a. It is a scale adap-
tive partition which will prevent divergences from showing
up in the calculation of Z(q, a) for negative q values.

The multifractal formalism developed by Arnéodo
et al. [24] consists in computing the singularity spectrum
D(h) of a function s as the Legendre transform of the
function τ(q), that is:

D(h) = minq[qh− τ(q)]. (5)

This approach is generally called the wavelet transform
module maxima method (WTMM). The h(q) and d(q)
entities may also be defined by means of a canonical defi-
nition:

h(q, a) =
∑
l∈L(a)

T̂g[s](q, l, a)ln|supà≤aTg[s](bl(à), à)|

D(q, a) =
∑
l∈L(a)

T̂g[s](q, l, a)ln|Tg[s](q, l, a)| (6)

with: T̂g[s](q, l, a) = |supà≤aTg[s](bl(à), à)|.
The D(h) spectrum is obtained by representing D(q)

versus h(q) for different values of q.
From these definitions, we have developed an algo-

rithm which allows the different resulting magnitudes of
the wavelet transform to be determined. The algorithm
used to determine singularity spectra and Hölder expo-
nents may be divided into two parts :
– calculation of the wavelet transform of the considered

signal and calculation of local maxima of the module,
– calculation of the partition functions and evaluation of

functions h(q, a) and D(q, a).
The calculation of spectra D(h) and τ(q) may be done

by means of canonical functions, as an alternative to the
Legendre transform.

4.2 Validation

In order to validate our calculation tool, it is tested on
signals for which spectrum D(h) may be expressed ana-
lytically. We choose a “devil’s staircase” type monofractal
signal associated with the analytically determined “tri-
adic Cantor”. The partition functions Z(q, a) are com-
puted from the WTMM. The τ(q) spectrum follows a
linear curve, the slope of which provides an estimate of
the unique Hölder exponent h = Log 2/Log 3, which
characterises the uniform triadic Cantor set. The sin-
gularity spectrum is reduced to a single point D(h =
Log 2/Log 3) = Log 2/Log 3, i.e., the Hausdorff dimension
of the triadic set [22].
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Fig. 3. WTMM measurement of the singularity spectrum of
an experimental signal for various order N of the derivative
Gaussian function as an analysing wavelet.

5 Application to experimental signals

5.1 Precautions

Before applying the WTMM method to the experimen-
tal signals, a certain number of precautions must be
considered.

5.1.1 Signal dynamics

Firstly, it is necessary to check that the signal dynamics
and the acquisition time resolution are sufficient to avoid
bias in the results. We therefore limited our investigation
to a range of Reynolds numbers from 2000 to 4000.

Indeed, at low Reynolds numbers, we find ourselves
in the thermoconvective instability zone, that is, signals
containing stationary phases, of variable duration, inter-
rupted by large amplitude fluctuations [14,15]. The cor-
responding signal contains great irregularities due to very
localised structures. To analyse these signals another pro-
cedure should be adopted, such as that applied for pres-
sure signal processing recorded by the Couder group [25].

In the case of high Reynolds numbers, the signal am-
plitude becomes low and the signal is no longer repre-
sented on scales significantly enough to be analysable by
the wavelets.

5.1.2 Choice of the analysing wavelet

The analysing wavelet g is generally chosen to be well lo-
calised in both space and frequency. The Gaussian deriva-
tives are tested up to order 4. For a given signal, Figure 3
shows the evolution of the singularity spectrum D(h). It is
to be noted that the spectrum given by the analysing func-
tion of a non zero average, i.e., the Gaussian curve, differs
completely from the other spectra. However, from N = 1,
the spectra are practically imperceptible and are therefore
now independent of the chosen analysing wavelet in so far
as the latter is orthogonal to the constants. This analy-
sis thus suggests the presence of smooth behaviours, low
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Fig. 4. WTMM measurement of the singularity spectrum, (a)
D(h) vs. h and (b) τ (q) vs. q, for two different lengths of signals.

frequency in the signal causing broken invariance. As the
choice of the analysing wavelet is flexible, the WTMM al-
lows us to avoid the low frequency behaviour. So, as from
the first derivative of the Gaussian curve, as analysing
wavelet, the results may be said to be non biased. The
second derivative of the Gaussian “Mexican hat” is there-
fore chosen as the analysing wavelet.

5.1.3 Evolution versus the signal length

The maximum duration of a recording is around 7 hours,
which corresponds to a total file of 1 600 000 values. From
this file, we build up the different realisations to be pro-
cessed. An analysis is carried out in relation to the length
of realisation. For this, we consider two different lengths
of realisation, that is 215 and 216 values, and we apply the
WTMM method. Then, for an average of ten realisations
we determine the singularity spectrum D(h) as well as
the function τ(q) for both cases. As an example, Figure 4
shows the evolution of D(h) and of τ(q) for lengths of 215

and 216 values for a given experimental signal. There does
not seem to be an evolution between these two lengths
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and therefore processing on files of 216 values may be con-
sidered sufficient for the range of Reynolds numbers under
consideration. Moreover, comparing an average from ten
or twenty realisations, the average does not evolve and it
can be considered that ten realisations are sufficient for
statistics.

5.1.4 Evolution of distribution functions and moments

The distribution functions are determined by evaluating
the moments of the order q of the wavelet coefficients when
a and q vary. Established statistics for these moments
must not present bias nor distortion which could render
the summation result too erroneous. For a fixed length of
signal, the distribution functions are therefore to be anal-
ysed with care, in order to retain only the interval of values
of a and q for which the resulting error is permissible. This
allows us firstly to determine the scale range a on which
the linear regressions may be made and secondly to limit
the value range of q, which may be scanned to calculate
the partition functions Z(q, a). As an example, for a given
experimental signal, the probability distribution functions
(PDF) are shown in Figure 5, calculated from the max-
ima for different scale values a. It is to be noted that when
the scale decreases, the PDF tends to be concentrated on
the low values of the wavelet coefficients. This behaviour
leads to great inaccuracies for moments of order q, while
q is negative. When scale a increases, the PDF becomes
more and more irregular, especially for high values of the
wavelet coefficients, which may lead to statistical problems
for moments of order q when q is positive.

However, another limitation is called for. Indeed, the
limits of the values of q must be determined to calculate
moments of order q. Thus, for a scale log(a) = 5.65, the
curves allowing the computing of the moments of order q
are displayed in Figure 6. For positive values of q, it is to
be noted that when the value of q increases, integration
is carried out more and more on the fluctuation to be
found around the great wavelet coefficients values. When
q decreases, the integration area is concentrated on the
small wavelet coefficient values. These two aspects imply
distortions and bias on the calculations done.

The probability distribution function curves and mo-
ments of order q allow reasonable limits of the parameter
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values a and q. The limits adopted, for the fixed length of
realisation, are such that:

– regression range: 2 < log a < 6
– moments order q: −1.5 < q < 4

outside these intervals, the biases will be too great and
the corresponding results invalid.
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5.2 Results

Having described the WTMM method, we will now ap-
ply this technique to the experimental signals. These
signals concern the evolution of the wall temperature,
at the top of a straight section, at an axial coordinate
z = 80 cm for a heat flux P = 21.5 kW/m2. As an example
Figure 7 shows the evolution of a temperature signal for a
Reynolds number Re = 3400. The corresponding wavelet
transform modulus maxima skeleton computed with the
“mexican hat” is illustrated in Figure 8a. In Figure 8b
various curves of log2Z(q, a) versus log2(a) are displayed
for various values of q. A linear behaviour is observed (on
the scale range observed) for all the values of q. The ex-
ponent τ(q) extracted from the power-law behaviour of
Z(q, a) is represented in Figure 8c. τ(q) is an increas-
ing convex nonlinear function of q. Figure 8d displays
various curves h(q, a) versus log2(a) whose slope permits
us to estimate h(q). The slope of the functions D(q, a)
(Fig. 8e) represented versus log2(a), for different values of
q, gives D(q). By means of h(q) and D(q), we obtain the
singularity spectrum D(h) which is displayed in Figure 8f.
The maximum value of D(h) is equal to 0.99 ± 0.1; this
value suggests that the signal is almost everywhere sin-
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Fig. 10. Evolution of the temperature signal for vertical and
horizontal configurations (Re = 2250).

gular. In this figure, it can be seen that the singular-
ity encountered most frequently (the one which corre-
sponds to the maximum ofD(h)) is of the Hölder exponent
h = 0.65± 0.01. A priori, the aspect of the spectrum may
suggest that the signal is not monofractal. However, the
limited spread of the values does not reveal an obvious
multifractal aspect either.

The control parameter of the hydrodynamic laminar-
turbulent transition is the Reynolds number; we there-
fore apply the WTMM to temperature signals correspond-
ing to the values of the fluid velocity concerning this
regime (Reynolds numbers between 2000 and 4000). Thus,
Figure 9a shows the evolution of the wall temperature sig-
nal for two different values of the Reynolds number, in the
studied range. As the shape of the various intermediate
magnitudes to determine the spectrum D(h) are similar
to those of the previous example, we confine ourselves to
representing simply the singularity spectrum D(h) con-
cerning the two signals (see Fig. 9b). The same observa-
tions (example Fig. 8) remain valid. However, the value of
exponent h associated to the maximum of spectrum D(h),
marked hmaxD(h), decreases when the Reynolds number
increases; indeed, in the case of signal 1 (Re = 2250)
hmaxD(h) is evaluated at 0.65 ± 0.01; in the case of sig-
nal 2 (Re = 3150), hmaxD(h) is evaluated at 0.59 ± 0.01.
This result is foreseeable since this Hölder exponent must
go to value 1/3 when the fully developed turbulence is
reached, which complies with Kolmogorov’s theory [11].

We exploit this property, that is the evolution of
hmaxD(h), essentially to evaluate the degree of turbulence
of a given signal. Thus, to appreciate the effect of the
secondary flows, caused by natural convection, on the hy-
drodynamic “laminar-turbulent” transition, we propose to
evaluate hmaxD(h) during this transition in the cases of
a configuration without secondary flows, i.e., pure forced
convection and of a configuration with secondary flows i.e.
mixed convection.

In the same range of the Reynolds number (Re ≈ 2000
to 4000) considering the same axial coordinate z and the
same heat flux supplied to the wall, we record signals of
the wall temperature evolution, for the horizontal (mixed
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convection) and vertical (forced convection) configura-
tions. To illustrate this, Figure 10 shows the evolution
of the signal for both configurations for the same value of
the Reynolds number. Considering the same statistics, we
apply the WTMM for the various recorded signals and
calculate the corresponding Hölder exponent hmaxD(h).
Figure 11 shows that the hmaxD(h) follow parallel evo-
lutions in both configurations versus the Reynolds num-
ber and that the values of hmaxD(h) for the vertical tube
(forced convection) are situated below those for the hor-
izontal tube (mixed convection). This shows that the de-
gree of turbulence is greater in forced convection than
in mixed convection. In this case, the secondary flows,
caused by natural convection, reduce the turbulence level
and play the role of “stabiliser” of the weak turbulence.
The convective rolls structure the flow and stifle the be-
ginnings of the turbulence. It could be said that the move-
ment carried by natural convection is coherent and that
this coherent movement controls the first incoherent nu-
clei of the turbulence in the presence of weak turbulence
in the system.

6 Conclusion

The use of the wavelet transform for thermal signals
enables us to characterise the hydrodynamic “laminar-
turbulent” transition. The comparison of the results un-
der the same experimental conditions obtained for a verti-
cal (forced convection) and a horizontal mixed convection
flow shows the effect of transverse secondary flows in this
regime. Essentially, we note that the latter play a stabil-
ising role in relation to the advent of the turbulence and
thus delay the hydrodynamic transition. This conclusion
is possible thanks to the use of the variation of the Hölder
exponent associated to the maximum value of the singu-
larity spectrum versus the Reynolds number.

The authors acknowledge A. Arnéodo, Directeur de Recherches
au CNRS (Centre de Recherche Paul Pascal, Université de Bor-
deaux, Talence), for his profitable advice during the elabora-
tion of this work, especially concerning the use and implemen-
tation of the WTMM method.
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